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Abstract. We present detailed calculations of low-energy spin dynamics in the “ferric wheel” systems
Na:Fe6 and Cs:Fe8 in a magnetic field. We compute by exact diagonalisation the low-energy spectra and
matrix elements for total-spin and Néel-vector components, and thus the time-dependent correlation func-
tions of these operators. Comparison of our results with the semiclassical theory of coherent quantum tun-
nelling of the Néel vector demonstrates the validity of a two-state description for the low-energy dynamics
of ferric wheels. We discuss the implications of our results for mesoscopic quantum coherent phenomena,
and for the experimental techniques to observe them, in molecular magnetic rings.

PACS. 75.10.Jm Quantised spin models – 03.65.Sq Semiclassical theories and applications
– 73.40.Gk Tunnelling – 75.30.Gw Magnetic anisotropy

1 Introduction

Quantum coherent tunnelling of the magnetic moment
in nanoscopic magnets has recently become the focus of
strong experimental and theoretical activity [1]. The ferric
wheel systems FeN (Fig. 1) present a particularly promis-
ing subgroup in which crystals have now been prepared of
compounds with N = 6, 8, 10, 12 and 18 magnetic Fe(III)
ions in ring geometry [2–8]. These molecules have antifer-
romagnetic (AF) coupling between spins s = 5/2 on each
iron site, show a ground state with vanishing total spin
S = 0 at zero field, and because of an effective uniaxial
magnetic anisotropy admit the possibility of mesoscopic
quantum phenomena in the form of coherent tunnelling of
the Néel vector [9–12].

The best characterised molecular rings are Fe10 [5,6],
various realisations of Fe6 [2,3], which differ in ligand
group and central alkali metal ion, and Cs:Fe8 [4]. These
materials have been studied by a variety of experi-
mental techniques, including magnetic susceptibility and
torque magnetometry [2,13–15], specific heat [16], elec-
tron spin resonance (ESR) [17], inelastic neutron scatter-
ing (INS) [14] and spin relaxation in nuclear magnetic res-
onance (NMR) [18]. All of these studies serve essentially to
characterise the zero-field spectrum and the dependence
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Fig. 1. Schematic representation of an Fe6 ring with spins
aligned along the easy axis (ẑ), whose orientation is normal to
the ring plane. The field h = gµBB is applied in the plane of
the ring.

of the energetic separation of the lowest two levels on the
applied field, both of which may be encapsulated within
a phenomenological Hamiltonian written in terms of only
the total spin [6,13].

In contrast to the situation in the ferromagnetic (FM)
molecular clusters Mn12 and Fe8 [19], the notion of spin
quantum tunnelling in the AF ferric wheels has to date
received little experimental attention. On the theoretical
side, a semiclassical description of the low-energy dynam-
ics provides the clear prediction [12] of coherent tunnelling
of the staggered moment. Analysis of magnetisation and
torque measurements in this framework [20] allows one to
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extract the AF superexchange J and an effective uniax-
ial anisotropy kz for the ring molecules. kz determines the
height of the tunnel barrier between the degenerate energy
minima, and thus the extent to which quantum transitions
may influence the system response at the lowest temper-
atures.

Although technical difficulties certainly arise in cou-
pling directly to the staggered moment, the ferric wheels
appear to offer significant advantages over FM molecules
for the experimental observation of coherent tunnelling. In
all such molecular crystals there are many possible sources
of decoherence [20] which act to destroy the coherent na-
ture of the predicted tunnelling processes. These we dis-
cuss in further detail in Section 4. Here we note only that
any measurement of quantum coherence effects would re-
quire at minimum that the decoherence time Γ−1 be sig-
nificantly longer than the tunnelling time ∆−1. From the
semiclassical theory, summarised in Section 2, ∆ is the
level separation in the low-energy (two-state) manifold,
and corresponds to the tunnel splitting. In the FM sys-
tems Γ � ∆, and mesoscopic spin quantum tunnelling is
said to be incoherent. While the reasonable assumption
that decoherence rates, Γ , are not vastly different in the
FM and AF systems remains to be proven, the tunnelling
frequency, ∆, is some 6-7 orders of magnitude larger in
the AF ferric wheels, making these very good candidates
for the observation of coherent tunnelling. We note here
that none of the above types of experiment offers a means
to extract a decoherence rate or to distinguish between
coherent and incoherent tunnelling.

The decoherence rate can be determined only from dy-
namical quantities [21], whose spectral linewidths provide
an upper bound on Γ . In the strictest sense, experimen-
tal confirmation of the inequality Γ � ∆ still does not
establish the existence of coherent dynamics, an under-
taking which would require a true time-domain observa-
tion of an appropriate oscillating quantity. In this study
we seek to establish that coherent oscillations, including
coherent tunnelling processes, are indeed present in the
dynamical properties of ferric wheel systems without de-
coherence. That this is not a trivial statement is clear both
phenomenologically from the apparent success of a model
requiring only the total spin [6,13], and microscopically
from the huge number of states [(2s + 1)N ], energy-level
splittings and possible matrix elements involved in a com-
plete description. Establishment of the presence and na-
ture of quantum coherence in these mesoscopic molecular
systems would provide both an existence proof for coher-
ent spin tunnelling if the condition Γ � ∆ is satisfied,
and valuable guidance for its experimental observation.

Thus we present a detailed investigation of the dy-
namical properties of the ferric wheels Na:Fe6 and Cs:Fe8

by exact diagonalisation (ED). A necessary initial step
is to identify those dynamical quantities from which in-
formation on the quantum dynamics of interest may be
obtained. This task is straightforward for FM molecular
clusters, but is less immediately evident in ferric wheels,
where, with the exception of a recent examination of elec-
tronic and nuclear spin dynamics in a semiclassical frame-

work [21], a full analysis of microscopic dynamical prop-
erties is still lacking for the realistic Hamiltonian. The
spin dynamics of rings with AF Heisenberg interactions
has attracted some recent interest (see Refs. [22,23] and
references therein). However, previous studies have been
restricted to systems without anisotropy, which are not
expected to show mesoscopic quantum phenomena in the
form of coherent Néel vector tunneling.

In contrast, we consider here the spin dynamics of a
full, effective Hamiltonian for the ferric wheels Fe6 and
Fe8. The calculation of dynamical quantities, which we ob-
tain from total-spin and Néel-vector correlation functions,
then provides essential new information adding to the un-
derstanding of the physical properties of ferric wheels.
Such a study is required not only to establish the exis-
tence of quantum coherent oscillations in a microscopic
model for a complex, mesoscopic system, but also to aid
the extraction of decoherence rates from experimental dy-
namical quantities. On the theoretical level, dynamical
studies are qualitatively more difficult than the calcula-
tion of ground-state properties [20] because they require
that excited states and all corresponding matrix elements
be taken into account. We note that a very recent, related
study [24] of the systems Fe6 to Fe12, while technically
advanced, includes the anisotropy only at the level of a
low-energy effective Hamiltonian and does not consider
intrinsic dynamical correlations in the presence of a time-
independent magnetic field.

The manuscript is organised as follows. In Section 2 we
present the model Hamiltonian and observables, and pro-
vide a brief overview of the technique by which they are
analysed. In Section 3 we present our results for Na:Fe6

and Cs:Fe8, both in the time domain and by analysis of
matrix elements, and illustrate their physical origin by
comparison with semiclassical approaches. In Section 4
we discuss the microscopic understanding of quantum co-
herence, decoherence sources and the prospects for experi-
mental observation of spin tunnelling in ferric wheels. Sec-
tion 5 contains a summary and conclusions.

2 Model and method

We work within the minimal model Hamiltonian for AF
rings with effective uniaxial anisotropy [12,20,21],

H = J
N∑
i=1

si·si+1 − kz
N∑
i=1

s2
i,z + h·

N∑
i=1

si, (1)

where N = 6 or 8, s1 = sN+1 and h = gµBB. J is the su-
perexchange interaction which favours an AF spin config-
uration on the ring, kz is the effective uniaxial anisotropy,
of dipolar and single-ion origin, and the final term is the
Zeeman coupling. In the following all energies and fields
are scaled to J and ~ is set to unity. We define the total-
spin operator

S =
N∑
i

si (2)
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and the Néel-vector operator

n =
1
Ns

N∑
i

(−1)isi. (3)

For finite anisotropy the total spin is not a good quantum
number, meaning that kz leads to mixing of different spin
multiplets, as will be evident from anticrossings in the
energy spectra as a function of field to be shown below.
This is a principal reason why numerical calculations are
required to make further progress in a quantitative anal-
ysis of equation (1). The dynamical variables we consider
are the autocorrelation functions of the total-spin and
Néel-vector operators,

Sαα(t) = 〈Sα(t)Sα(0)〉 (4)

and

Nαα(t) = 〈nα(t)nα(0)〉, (5)

from which one may seek temporal oscillations character-
istic of coherent tunnelling dynamics. Working with cor-
relation functions of total spin and Néel vector is advan-
tageous because it allows one to retain some of the spatial
symmetries. This simplifies the computation of matrix el-
ements of S and n required in addition to the energy spec-
tra for a full understanding of the dynamics.

The dynamical response of a single spin [21] may also
be considered directly. However, we state that all relevant
dynamical properties are encoded in the two correlation
functions above (Eqs. (4,5)), and show that the single-
spin quantities can be deduced from these as follows. We
denote by eip the eigenvalue of the one-site translation
operator on the ring, and presume that all low-energy
states are contained in the sectors p = 0 and p = π, a
fact we will verify below. If the ground state, |0〉, is in the
sector p = 0, then matrix elements 〈i|Sα|0〉 are finite only
for states |i〉 in the sector p = 0 and elements 〈i|nα|0〉 are
finite only for states |i〉 in the sector p = π. Because all
states considered are invariant under translations by two
lattice sites, S may be substituted by 1

2N(s1 + s2) and
n by 1

2s (s1 − s2). It follows that single-spin correlation
functions are given at low frequencies by

〈s1α(t)s1α(0)〉 ' s2Nαα(t) +
1
N2
Sαα(t), (6)

because the cross-correlation functions 〈nα(t)Sα(0)〉 van-
ish due to the opposing symmetries of n and S under
one-site translation.

Taking as a guide the semiclassical treatment of refer-
ence [12], a tunnelling scenario is applicable if the ground
and first excited states, |0〉 and |1〉, are energetically
well separated from all other states and form a (weakly)
tunnel-split doublet with splitting ∆ = E1 −E0. Because
the states |0〉 and |1〉 have opposite behaviour under trans-
lation, as defined above, the total-spin matrix element
vanishes in this manifold, 〈1|S|0〉 = 0, and Szz(t) has
no coherent oscillations with period characteristic of the
tunnelling time ∆−1. By contrast, the dynamical prop-
erties of the Néel vector are dominated by tunnelling

in the lowest manifold, |〈1|nz|0〉| ∼ 1, so that Nzz(t)
should exhibit coherent oscillations with period 2π/∆. The
quantities S and N are measured through the suscepti-
bilities χS and χN, which are directly related to equa-
tions (4, 5) by the fluctuation-dissipation theorem. χ′′S is
accessible in ESR or alternating-current (AC) susceptibil-
ity measurements, but, because χ′′S(ω ∼ ∆) = 0 shows
no response at the splitting frequency ∆, does not con-
tain any information on tunnelling dynamics [21,25], by
which is meant processes in the low-energy sector. χ′′N
is the quantity which, in accordance with semiclassical
theory [12,21], should show oscillatory behaviour due to
coherent Néel vector tunnelling. In the weak tunnelling
regime, χ′′N(ω ∼ ∆) ' πδ(ω −∆) tanh(β∆/2) has a delta-
function peak at ∆ [21], but its experimental observation
is not straightforward.

A microscopic analysis of equation (1) involves many
energy levels coupled by potentially large matrix elements
of the operators S and n arising from the spin interactions.
Qualitatively, the system in a transverse magnetic field
(Fig. 1) exhibits two degenerate, classical spin configura-
tions (obtained by reflection in the ring plane), between
which the semiclassical approach predicts a tunnelling sce-
nario. However, because of the approximations involved in
this description, it is not clear that a fully quantum me-
chanical treatment of the ferric wheel systems would con-
firm the presence of two low-lying levels sufficiently well
separated from all others, or that Nαα would exhibit co-
herent oscillations dominated by a single frequency for any
choice of α or of the applied field. We use the exact corre-
lation functions, meaning the spectra and matrix elements
required in their calculation, to resolve this issue.

Magnetisation curves of Heisenberg rings (Eq. (1) with
kz = 0) were computed some time ago using Lanczos
ED [26], while recent computations of dynamical prop-
erties [23] remain very similar in scope. The situation
becomes more complicated in the presence of a non-zero
single-ion anisotropy, kz 6= 0, and of a magnetic field ap-
plied at an arbitrary angle to the ẑ-axis. First, in this case
the eigenvectors have a non-trivial dependence on the ap-
plied field. Second, when Sz is no longer a good quan-
tum number, the loss of the associated symmetries in spin
space causes a substantial increase in the dimensions of the
Hilbert spaces. With modern computers it is possible to
compute ground-state properties by the Lanczos method
without exploiting spatial symmetries, at least in the case
of Fe6 [20]. However, as indicated above, dynamical stud-
ies require in addition many excited states and the corre-
sponding eigenvectors, although some spatial symmetries
remain which simplify this task. The Lanczos method can
also be used for this purpose [27], but becomes substan-
tially more involved.

The complete Hilbert spaces for Fe6 and Fe8 rings con-
tain 66 = 46656 and 68 = 1679616 states, respectively. For
the general case of equation (1), there are no symmetries
in spin space [28], but the spatial symmetries of one-site
translation and reflection at a given site are present. The
ground state in a magnetic field is always located either
in the sector with p = 0 or with p = π, and has positive
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parity with respect to reflection at the selected site. These
two sectors also contain the lowest excitations. The dimen-
sions of these sectors are 4291 (107331) for p = 0 and 4145
(106680) for p = π in the case of Fe6 (Fe8). Since the Néel
vector connects these two subspaces, we work in the sum
of the two spaces, which has dimension 8436 (214011), for
the computation of matrix elements and correlation func-
tions.

There are several viable methods for the computation
of a large number of extremal eigenvalues and -vectors. We
have used a combination of simultaneous vector iteration
of a large number of vectors with explicit diagonalisation
of the Hamiltonian H in the subspace spanned by these
vectors during the iteration [29]. For Fe6 we have com-
puted the lowest 350 eigenvectors and eigenvalues in the
symmetry subspace described above. The error caused by
this truncation may be estimated in two ways. One is to
examine how the results change on varying the number
of states retained, and the other is an exact evaluation at
t = 0 of the correlation functions (4) and (5) for compari-
son with the results obtained using the truncated spectral
representation. On the basis of both methods we estimate
that the truncation leads to errors in the temporal correla-
tion functions for Fe6 on the order of 10−6 of the peak val-
ues, meaning that the truncation error is undetectable in
any of the figures to be shown below for Fe6, while numer-
ical errors for the individual eigenstates are considerably
smaller still. For Fe8 we have retained the lowest 50 eigen-
vectors in the combined subspace, and have an estimated
truncation error on the order of 10−4 of the peak values
in the temporal correlation functions. As noted above, all
of our results are obtained for zero temperature using the
minimal Hamiltonian (1), and thus include no sources of
decoherence.

As in reference [20] we will focus on magnetic fields ap-
plied in the plane of the ring (Fig. 1), the geometry which
retains the highest tunnel barrier, with maximal localisa-
tion of the Néel vector, at given field. We have also consid-
ered field angles out of the plane of the ring, and confirmed
that they yield qualitatively similar results at strong fields.
This is to be expected because the physical situation re-
mains one in which the spins are largely confined to a
planar motion between two potential minima, and also
because in our numerical approach the z-inversion sym-
metry of the transverse-field case is not essential. Here
we calculate dynamical quantities (Eqs. (4,5)) exhibiting
oscillations in the time domain, and discuss the informa-
tion they contain concerning mesoscopic quantum coher-
ent phenomena.

3 Results

3.1 Na:Fe6

We begin with a discussion of the energy spectrum for the
physical system Na:Fe6, for which kz/J = 0.0136 in equa-
tion (1) [20]. As the applied field is increased, level cross-
ings occur at critical fields Bcn between ground states with
increasing total spin and alternating quantum numbers

∆

(a) (b)
0

1

2
/Ji

Fig. 2. Lowest energy level spacings ∆i = Ei − E0 for an
Na:Fe6 ring described by the minimal Hamiltonian (1), for ap-
plied fields gµBBx = 3.1J (a) and gµBBx = 3.5J (b). The
thickness of the vertical lines represents the magnitude of the
matrix elements of nz connecting each level pair.

p = 0 or p = π. This leads to a magnetisation curve with
an almost regular staircase of plateaux [20]. Guided by the
semiclassical prescription that quantum tunnelling is best
defined in intermediate fields [12], we consider magnetic
fields beyond the lowest magnetisation plateau (B > Bc1).

Figure 2 shows the lowest energy levels for two fields
chosen near the centre of a magnetisation plateau (a) and
very close to a level crossing (b) (see Figs. 5 and 6 below).
Near the level crossing, there are indeed two nearly de-
generate levels lying well below any of the others, but we
stress that this alone is not sufficient to guarantee single-
frequency oscillations corresponding to the energy differ-
ence ∆ in any observable, and thus to justify a two-level
tunnelling scenario. This point is represented schemati-
cally in Figure 2 by the lines connecting the levels, the
thickness of which corresponds to the magnitude of the
matrix element |〈i|nz|j〉|, where i and j denote the energy
levels. For fields corresponding to the centre of a plateau,
one observes by contrast that there is no clear two-level
manifold, but that for certain operators, such as nz as
shown, the matrix element between the lowest pair of lev-
els is dominant. This situation, |〈1|nz|0〉| ∼ 1, can be taken
to express the requirement for a two-level description to
be adequate for mesoscopic tunnelling of the Néel vector.

3.1.1 Time domain

There are in principle two ways of testing the coherent
low-energy dynamics of a two-level system at low tem-
peratures. The first would be to prepare the system in a
non-eigenstate of the Hamiltonian, |ψ〉 = (|0〉 + |1〉)/

√
2,

and then to observe coherent oscillations of the quan-
tity of interest (here nz) in the time domain. The second
is to measure ground-state correlation functions such as
〈0|nz(t)nz(0)|0〉. For an idealised tunnelling scenario in
which nz connects only |0〉 and |1〉, these two quantities
contain the same information because in this case

|Re 〈0|nz(t)nz(0)|0〉| ≈ |〈ψ|nz(t)nz(0)|ψ〉|. (7)
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Fig. 3. The Néel vector correlation function Nzz(t) for Na:Fe6

in magnetic fields (a) gµBBx = 3.1J and (b) gµBBx = 3.5J .
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Fig. 4. The total-spin correlation function Szz(t) for Na:Fe6

in magnetic fields (a) gµBBx = 3.1J and (b) gµBBx = 3.5J .

In the tunnelling limit, where |〈0|nz|1〉| ∼ 1, one ob-
tains 〈0|nz(t)nz(0)|0〉 ' |〈0|nz|1〉|2ei∆t. The correlation
functions obtained from ED indeed show coherent oscilla-
tions with periods 2π/∆ = 24.5/J near the plateau centre
(Fig. 3a) and 2π/∆ = 132.0/J near the level crossing,
where in addition a strong component of a higher har-
monic is clearly evident (Fig. 3b). The solid and dashed
curves in Figure 3, representing respectively the left- and
right-hand sides of the two-level approximation (7), do not
coincide because of additional components present in the
correlation function of |ψ〉 [right-hand side of (7)]. These
indicate that |1〉 has significant matrix elements of nz with
states other than |0〉 (Fig. 2), as a result of which the
mapping of Na:Fe6 onto a two-level system is marginal
(below).

In stark contrast to Nzz , the total-spin correlation
function Szz (Fig. 4) shows oscillations only at the much
higher frequency hx/2π, as expected from the symmetry
considerations presented above. While these field-driven
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Fig. 5. Evolution with magnetic field of (a) the energy-level
splittings ∆i and (b) the matrix elements 〈i|nz|0〉 for the low-
energy sector (i = 1, 2) in Na:Fe6. ED results (symbols) are
compared with the RR approximation (lines).

oscillations are coherent, they do not correspond to a tun-
nelling process, where the levels involved lie below the
height of the anisotropy barrier, as is the case in the low-
est manifold.

3.1.2 Spectra and matrix elements

The time-dependent correlation functions shown above
may be understood directly from the matrix elements be-
tween the lowest-lying energy levels for the components
of the total-spin and Néel-vector operators. The symbols
in Figure 5 show the numerical results for energy-level
splittings and matrix elements of nz in the low-energy
manifold of Na:Fe6. The energy separations ∆i (Fig. 5a)
confirm that an appreciable separation remains between
the lowest pair of states and the next higher level for all
fields. That this criterion alone is not sufficient to assess
the quality of a two-level description is shown by the ma-
trix elements in Figure 5b. While 〈1|nz|0〉 is indeed large
for all fields, the matrix element 〈2|nz|0〉 is also signifi-
cant at fields close to the level crossings. In fact at the
plateau centers 〈2|nz|0〉 vanishes identically, and in this
field regime 〈1|nz|0〉 is considerably larger than 〈i|nz|0〉 for
all i ≥ 2. Our ED calculations confirm that the semiclassi-
cal picture of a tunnelling, or coherent oscillation at sub-
barrier energies of the Néel vector between directions +êz
to −êz, is indeed appropriate here. By contrast, at the
level-crossing fields more of the higher matrix elements of
nz are appreciable (Fig. 2b), and in particular 〈2|nz|0〉
has 66.0% of the magnitude of 〈1|nz|0〉. In the semiclassi-
cal description this corresponds to the Néel vector being
rather less well localised along ±êz than for fields at the
plateau centers. The effects of the higher matrix elements
with |0〉 (Fig. 5b) are clear in the difference between the
solid lines in Figures 3a and b, while those of the elements
with |1〉 are visible in the differences between solid and
dashed lines in Figure 3.
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Fig. 6. (a) Evolution with magnetic field of energy spectra for
Na:Fe6 up to ∆i = 5.5J . The solid lines represent ED data
in the momentum sectors p = 0 and p = π (in both cases,
only states with positive site parity appear in the energy range
of the figure), while the dashed lines correspond to momenta
p = π/3 and p = 2π/3 which are absent in the RR model. Note
the almost linearly Zeeman-split state at ∆i ≈ hx. (b) Matrix
element |〈i|Sz|0〉| as a function of magnetic field, represented
by radius of open circles. The dominant matrix element corre-
sponds to the level with ∆i ≈ hx for hx ≥ 0.7J , while for the
same field range the next-largest elements correspond to still
higher excited levels.

Figure 6a shows the spectrum of Na:Fe6 as a function
of field, expanded to splittings ∆i = 5.5J , which illus-
trates both the predominance of the anticrossing between
the second and third levels and the presence of a linearly
evolving Zeeman-split level at∆i ≈ hx. The total-spin ma-
trix elements in Figure 6b show the two primary features
expected on symmetry grounds: the matrix element in the
low-energy sector vanishes, 〈1|Sz|0〉 = 0, and the domi-
nant matrix element appears at the Zeeman splitting. This
situation remains very close to the kz = 0 limit, where the
field-driven Zeeman transition is the only process with
a non-vanishing matrix element, |〈i|Sz |0〉| =

√
S(hx)/2,

in which S(hx) denotes the spin of the ground state at
field hx.

To clarify the issue of the importance of choosing nz
and Sz, we comment that we have also studied correlation
functions of the other components of n and S. These quan-
tities confirm that oscillations generically similar to those
observed in Nzz and Szz remain. However, the correlation
functions of the vectors tend to show less clearly defined
oscillations as compared to those of the z-components,
because the transverse components couple rather more
strongly to further levels.

3.1.3 Rigid-rotor model

Further insight may be gained into the nature of our
exact results by comparison with those from semiclassical

approaches [11,12,20], which specify the conditions for
the two-level system to provide an appropriate descrip-
tion of the low-energy spectrum of equation (1). Under
the assumptions that the spins in the ferric wheel have
alternating (Néel) alignment and that magnon excitations
may be neglected, H can be mapped to the Hamiltonian
of a rigid rotor (RR) [12],

HRR =
2J
N

L2 + h · L−Nkzs2n2
z, (8)

where n and L are respectively the position and angular
momentum of a particle confined to the unit sphere. The
operator for total spin is represented by the angular mo-
mentum of the particle, S = L, the eigenstates of which,
|l,m〉, are spherical harmonics. The term −Nkzs2n2

z ac-
counts for the anisotropy potential which renders energet-
ically favourable those spin configurations for which the
Néel vector n is aligned with ±êz. For small kz , the eigen-
states of equation (8) have almost uniform probability dis-
tribution of n in the plane perpendicular to the magnetic
field, which corresponds to the kinetic limit of HRR. The
opposite limit of large kz is specified by the condition that
the tunnel action S0 = Ns

√
2kz/J be very much greater

than 1 [12], and it is here that a two-level description of
quantum tunnelling of the staggered magnetisation is ap-
propriate.

The condition S0 > 1 may be taken to mark the onset
of a spin quantum tunnelling regime, in which there is only
one pair of tunnel-split states in the low-energy sector. In
this respect a two-level approximation is marginal for the
real materials, although should be rather better defined
for Cs:Fe8 (S0 = 3.8) and Fe10 (S0 = 3.3) than for Na:Fe6

(S0 = 2.5). In this regime of intermediate kz/J the RR
framework remains applicable, but the anisotropy energy
−Nkzs2n2

z, which may not be treated perturbatively, gives
rise to significant mixing of states of differing angular mo-
mentum l. A quantitative comparison of RR results with
ED then requires exact diagonalisation of equation (8).
This is most easily performed in the basis |l,m〉 in which
L is diagonal, and the matrix elements 〈l′,m′|n2

z |l,m〉 are
evaluated in spherical coordinates. For moderate fields,
the unphysical states of large angular momenta (l > 15)
may be neglected in the RR approach, and the dimension
of the Hilbert space is then strongly reduced from that of
the full Hamiltonian (256 compared to 46656 for Fe6).

Comparisons between ED of the RR model (8) and
the exact numerical results are shown in Figure 5. There
is rather good general agreement in the low-energy sector,
especially in magnitudes of ∆i and |〈i|nz|0〉|, but also a
drift in field of the predicted magnetisation step positions
from the exact result [30]. This is thought to be largely a
consequence of neglecting magnon excitations, by which is
meant spin misalignments within each of the sublattices,
and can be removed by a uniform rescaling (with a fac-
tor of 1.036 for the parameters of Na:Fe6). The RR model
is not expected to perform as well at higher energies, a
statement which can be quantified by inspection of the
exact spectra shown in Figure 6a, where energy levels cor-
responding to the neglected momentum sectors p = π/3
and 2π/3 appear at ∆i > 4J . However, the RR prediction
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Fig. 7. Evolution with magnetic field of (a) energy-level split-
tings ∆i and (b) matrix elements 〈i|nz |0〉 for the low-energy
sector in Cs:Fe8. In (b), the circles correspond to i = 1 and
diamonds to i ≥ 2.

of the total-spin matrix elements shown in Figure 6b re-
mains quite accurate for the energies shown, including the
qualitative result that no matrix elements of the total-spin
components connect |0〉 and |1〉 and the quantitative result
for the ground-state spin S(hx) ∼ bNhx/4Jc appearing
in the only large matrix element |〈i|Sz|0〉| ≈

√
S(hx)/2

at ∆i ≈ hx. We may summarise by remarking that, for
S0 > 1, the two-level paradigm [12,21] delivers a sim-
ple conceptual picture of the low-energy spin dynamics
in terms of coherent tunnelling of the staggered magneti-
sation, and that in addition the semiclassical treatment
based on ED of the RR approximation provides semi-
quantitative accuracy for the physical parameters of the
real materials.

3.2 Cs:Fe8

We turn briefly to the 8-membered ferric wheel Cs:Fe8.
The effective uniaxial anisotropy which may be extracted
from the magnetisation data for this material [14] is con-
siderably stronger than in the case of Na:Fe6 presented
above. Numerically, dynamical simulations remain possi-
ble for this system, despite the much larger Hilbert space.
Figure 7 shows the energy spectrum for a Cs:Fe8 system,
again described by equation (1), with the anisotropy ratio
deduced [20] from the angle-dependence of the first critical
field [14] to be kz/J = 0.0185. The situation remains qual-
itatively similar to Na:Fe6, but has visible differences as
a result of the larger values of N and kz/J . The stronger
coupling between eigenstates |l,m〉 results in a stronger
anticrossing of levels |1〉 and |2〉 at the plateau centers
and a smaller maximal ∆. This enhanced separation of
the two-state manifold at lowest energies, combined with
an increased tunnel barrier, makes the semiclassical tun-
nelling description more appropriate, as expected from the
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Fig. 8. The Néel vector correlation function Nzz(t) for Cs:Fe8

in magnetic fields (a) gµBBx = 3.4J and (b) gµBBx = 3.72J .

larger value of S0. Although in Figure 7 we show only the
results of full diagonalisation, we have verified that, as in
the case of Na:Fe6, the RR model again provides quali-
tatively similar results, albeit with a larger drift in the
level-crossing fields.

Figure 8 shows the Néel vector correlation function for
the system in two magnetic fields chosen close to a plateau
centre and to a plateau edge. We observe rather clean,
single-component temporal oscillations near the centre of
the magnetisation plateau (Fig. 8a), where the admixture
of higher frequencies is indeed weak. Near the level cross-
ing (Fig. 8b) the second-largest matrix element, 〈2|nz|0〉,
has 43.4% of the magnitude of 〈1|nz|0〉, demonstrating
again the reduced validity of the two-level description at
these fields, compared to the plateau centers. However,
the large separation in frequency scales results in clearly
visible contributions from both components, and thus to
pronounced low-frequency oscillations in Nzz correspond-
ing to coherent Néel vector tunnelling in Figure 8b.

4 Discussion

4.1 Nature of mesoscopic quantum dynamics

With the aid of the two-level analogue we obtain a con-
ceptual picture of the microscopic nature of quantum co-
herence. The main result of our ED study is that the cor-
relation functions of the total spin and the Néel vector,
Sαα(t) and Nαα(t) respectively, show qualitatively differ-
ent behaviour. Although both exhibit almost single-(or
two-)frequency oscillations for the parameters illustrated
here, the frequencies of these oscillations are very differ-
ent. While Szz(t) oscillates at a frequency determined by
the (strong) magnetic field, ω = hx, Nzz(t) exhibits oscil-
lations with a much smaller frequency, ω = ∆. The ampli-
tude of the Néel-vector correlation function, Nzz(t) . 1,
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also allows one to conclude that the oscillations indeed cor-
respond to a true quantum tunnelling. Hence, although
most features of the thermodynamic properties and the
ESR spectra of ferric wheels can be understood from
a phenomenological total-spin Hamiltonian [6,13], their
most interesting dynamical feature, quantum coherent
spin tunnelling, is not contained in such a description.

The clearest example of spin tunnelling would be ob-
tained by preparing a two-level system in the state |ψ〉
introduced in Section 3.1.1. For a ferric wheel this state
would correspond to a spin configuration of the type rep-
resented in Figure 1, with the Néel vector oriented in
the direction +êz. |ψ〉 is a superposition of energy eigen-
states whose evolution proceeds according to the phase
factors e−iEit of the energy levels, without disturbance
by external processes (decoherence), such that after ev-
ery odd number of half cycles the degenerate state |ψ̄〉 =
(|0〉 − |1〉)/

√
2, corresponding to the Néel vector oriented

along −êz, is achieved.
In the microscopic analysis of the ferric wheel, we have

demonstrated two important features in the realisation of
such an idealised tunnelling scenario. First, it is indeed
possible to reduce the complex physical system to an ef-
fective two-state model, by application of a strong field in
the ring plane. In this case, the dominant matrix element
of the selected operator nz is that connecting the two levels
in the low-energy manifold, such that Nzz exhibits single-
frequency oscillations at the splitting frequency ∆, which
corresponds to tunnelling dynamics of the Néel vector. We
stress in this connection that single-frequency oscillations
depend not only on the energetic separation of the levels
involved (from each other or from all others in the spec-
trum), but essentially on the matrix elements. While other
single-frequency oscillations may be found in a dissipation-
less quantum system, for the ferric wheel only that in the
low-energy manifold corresponds to a tunnelling process.
The second key feature is that in this situation the difficult
experimental step of establishing the non-eigenstate |ψ〉 is
not essential, given a suitable measurement of the equilib-
rium correlation functionNzz(t). We discuss in Section 4.3
below the possibilities for executing this nontrivial task.

Finally, we comment that the ferric wheels are interme-
diate in size between a minimal quantum system such as
two coupled s = 1 spins with anisotropy and the classical
limit of a large total (staggered) spin S � 1 with at least
two degenerate minima in an energy continuum. Compar-
ison of our exact numerical results with analytical expres-
sions for small systems, and with the RR model, provides
a prescription for understanding the evolution of coherent
phenomena with system size, and the accompanying evo-
lution of the appropriate description from microscopic to
semiclassical.

4.2 Decoherence

As already discussed in Section 1, we have not included de-
coherence within our numerical calculations. On the tech-
nical level this can be effected by the inclusion of a generic
bath coupled to the quantum system [31]. However, with

the aim of establishing the nature of coherent oscillations
in the mesoscopic ferric wheel systems, we have restricted
the present discussion to the pragmatic level on which de-
coherence times Γ−1 significantly longer than tunnelling
times ∆−1 are a prerequisite for any observation of coher-
ent phenomena [1].

In the ferric wheel systems the tunnel splitting fre-
quencies ∆ are very large: at the centers of the magneti-
sation plateaux, where we have shown that the clearest
single-frequency oscillations should be present, the tunnel
frequencies are ∆ = 235 GHz (11.4 K) in Na:Fe6, 62 GHz
(3.0K) in Cs:Fe8 and 45 GHz (2.2 K) in Fe10. At low tem-
peratures in a sufficiently pure crystal, decoherence will
be due primarily to additional interactions not included
in the minimal Hamiltonian of equation (1). The intrin-
sic decoherence rate, Γ , for ferric wheels is most likely
to be controlled by interring dipolar interactions of elec-
tron spins (10–50 mK), and possibly by interring superex-
change processes, whose contributions are very difficult to
estimate but may exceed 0.1 K [25]. Nuclear dipolar inter-
actions with 1H nuclei (0.1 mK) and hyperfine interactions
with 57Fe nuclei (1 mK) are sufficiently weak [21] that they
may be neglected in these systems. An approximate upper
limit for Γ in Na:Fe6 may be taken from the broadening
of the lowest magnetisation step at 40 mK [32], which was
measured as 0.4 T (0.54 K), although this is consider-
ably smaller than the broadenings observed at the mag-
netisation steps by NMR relaxation rate measurements
in Li:Fe6 [33]. In any event, even with these worst-case
decoherence estimates, the ferric wheels Fe10, Cs:Fe8 and
Na:Fe6 remain by the ∆ � Γ criterion very promising
candidates for observation of coherent spin tunnelling.

4.3 Detection of coherent tunnelling

Using the above picture of mesoscopic quantum coherence
at the microscopic level, one would like to consider those
experiments or techniques which may be applied in order
to detect coherent quantum tunnelling in the ferric wheels.
Unfortunately, our prescription is at first sight rather ex-
acting, as it requires observing time-dependent correlation
functions of the Néel vector. An observation would then
depend on a probe coupling to the staggered moment of
the AF rings. The closest available options for dynamical
investigations are the local spin-raising and -lowering op-
erations (∆szi = ±1) in NMR and INS studies. We have
argued that single-spin dynamics in the ring indeed re-
flects the Néel vector response, and thus conclude that
these techniques are in principle capable of revealing the
existence of coherent tunnelling processes at frequency ∆.
The matrix elements we have computed could also be used
to fit transition intensities higher in the INS spectrum. In
contrast to these probes, ESR is sensitive only to the total
spin S of the ferric wheels, and thus, as shown above and in
reference [21], cannot detect mesoscopic Néel vector tun-
nelling. The matrix elements for total spin indicate that
the ESR response would be dominated by the field-driven
Zeeman transition.

However, technical problems arise which would make
any observation of quantum coherence very difficult for
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the pure ferric wheels which are known. NMR measure-
ments suffer from the very weak matrix elements coupling
the nuclear spins to the electronic system [21], and from
the mismatch in frequency scales between the maximal
∆ and the probe frequency. Neutron scattering studies
would require a large, deuterated single crystal. Here we
suggest only that the most appropriate way forward would
be to expand the range of viable experiments by consid-
ering rings with a strongly broken symmetry, as may be
achieved by doping with nonmagnetic (s = 0) impuri-
ties [25], such as Ga in ferric wheels. These modified ferric
wheels retain the AF properties required to satisfy the
condition ∆ � Γ , and in addition possess an excess, or
tracer, spin which may be followed with a magnetic field.
The dynamical properties of these systems are expected
to retain the quantum tunnelling characteristics of the un-
doped systems [25], with the important additional feature
that the total spin S also reflects the coherent tunnelling
of n, which would then become accessible by ESR [21]. We
will address in a forthcoming publication the microscopic
and experimental aspects of dynamics in modified ferric
wheels.

5 Summary

In conclusion, we have presented a numerical and semiclas-
sical analysis of low-energy spin dynamics and quantum
coherent tunnelling phenomena in the molecular magnetic
ring systems Na:Fe6 and Cs:Fe8. The energy-level spectra
and the matrix elements for total-spin and Néel-vector
operators computed at different magnetic field values es-
tablish the presence of quantum coherent oscillations in
their correlation functions. Oscillations corresponding to
coherent tunnelling of the staggered magnetisation are
present for systems with the physical parameters of the
ferric wheels, with the cleanest single-frequency, or two-
level, oscillations found in the response of the Néel vec-
tor at applied fields in the centers of intermediate mag-
netisation plateaux. These results show that, despite the
small system size (N = 6 or 8) and small spin quantum
number s = 5/2, the semiclassical picture of Néel vector
tunnelling [12] provides a valid picture of the low-energy
dynamical properties of ferric wheels. Experimental obser-
vation of mesoscopic quantum oscillations is possible with
probes which flip local electronic spins, and would appear
to be most feasible in studies of broken-symmetry systems
obtainable by doping of the ring materials.
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